
Physics-based motion control through
hierarchical neuroevolution

Mart Hagenaars
Utrecht University

m.j.p.hagenaars@uu.nl

Nicolas Pronost
Utrecht University

nicolas.pronost@uu.nl

Arjan Egges
Utrecht University

j.egges@uu.nl

Figure 1: From left to right, behaviors of the cumulative control modules for posing, standing, and
reaching. The last one shows the standing controller reacting to external perturbations.

Abstract
In this paper, we propose a hierarchical
neuroevolution technique for physics-based
character animation control. The artificial
neural network that makes up the controller
is composed of a number of interdependent
control modules. As a proof-of-concept,
modules for posing, standing, and reaching
motions are demonstrated. We show that
evolving these modules one-by-one, with each
of them dependent on its predecessors, allows
evolution to converge faster, and possibly
deliver better and more stable results than
common, i.e. non-hierarchical, controllers.

Keywords: Developmental hierarchy, Neu-
roevolution, Motion control, Physics-based
character animation

1 Introduction

Before an infant learns how to walk, it has usu-
ally mastered several other motor skills, such as
rolling over, crawling, and sitting upright. Some
of these abilities are necessary in learning to
walk, as they lead to the development of both the

required neural pathways and physical strength.
Such a hierarchy of motor skills in humans has
already been identified [1]. Our approach is in-
spired by this concept which we apply on the
neuroevolution of sensor-motor skills.

Allen and Faloutsos [2] use the NEAT [3] al-
gorithm to optimize artificial neural networks
(ANNs), similar to what we propose in this
work. Their approach allows for gradual grow-
ing of the neural network, allowing for increas-
ingly complex behavior. They do not assume
any a priori knowledge of the appropriate actua-
tion patterns, but require only the physical prop-
erties of the character model and a simple fit-
ness function. In contrast, the controllers that
we present are not dedicated to just a single task
(e.g. locomotion), but rather for a hierarchical
set of different behaviors that can be dynami-
cally chosen.

The main contribution of this paper is the
method that we propose to generate joint torque-
based animation controllers, which consists of
an ANN that is created through a process of ar-
tificial evolution. This is achieved by impos-
ing a novel hierarchical and modular design, in
which the evolution of high-level functionality
is done step-by-step, as guided by multiple sim-
ple objectives, instead of by a single, complex



fitness function. The evolution process can be
repeated to build ever more complex controllers,
ultimately resulting in multiple control modules
that form a developmental hierarchy. Our ap-
proach is based on the premise that it is easier to
train an ANN for a new task if it already has the
solutions to more basic tasks at its disposal.

2 Methods

In our approach, evolved controllers, that gen-
erate actuation patterns, are created through an
off-line optimization process, so that they may
be used in real-time applications afterwards.
Our virtual character consists of 16 rigid bod-
ies and 15 joints (see Figure 1). Polygon mesh
data is also available to visualize the bones in-
side each body. The axis-aligned bounding box
for each mesh is used to generate simple colli-
sion shapes; solid boxes (flat feet) or capsules.

2.1 Developmental Hierarchy

The animation controller is built from ANNs.
The topology and the connection weights that
are associated with the connections determine
how information can be processed by the net-
work. The NEAT method [3] is used to optimize
both the weights and the topology of the ANNs
for the proposed fitness functions.

The hierarchy consists of one control mod-
ule per motor skill where each control module
is an ANN. The first control module represents
a low-level motor skill. Once the first module
is fully trained for, the second module is added
to the controller, representing a higher-level mo-
tor skill. During the training phase of the sec-
ond module, the first module is active but is not
evolved anymore. In the same way, a third mod-
ule may benefit from its underlying motor skills,
and so on, until the top-level module that repre-
sents the final desired behavior is completed.

Each control module is an ANN that has in-
put nodes (for control and sensors) and output
nodes (for actuation). Conceptually it makes no
difference whether the output values are inter-
preted as joint torques, desired joint angles, or
muscle activations, because the control modules
are trained accordingly during evolution.

Because many control modules use the same

sensory information, while producing output for
largely the same actuators, a single set of input
and output nodes is shared by all modules across
the animation controller and they are then im-
mutable by evolution.

2.2 Application

For the proof of concept of our method, the fol-
lowing target behaviors and fitness functions are
used, intuitively ordered in terms of complexity.

Posing One of the most basic actions that is
generally performed with virtual characters is
keeping them in a desired body pose. In a
physics-based environment, this means that a
character should actively compensate for any
perturbations from external forces, to keep a pre-
defined rigid body pose. The fitness function of
the posing control module consists of two ob-
jectives. The first one, ErestPose, is used to con-
verge towards a particular body pose, as defined
by target joint angles θj .

ErestPose =
∑
j∈J

∑
t

(θj,t − θj,t)2 (1)

This can be done for either all simulation
frames t, or for just the end state, which is the
second posing objective ErestPoseEnd (where
the sum over all simulation frames is removed
from the equation). The joint degrees-of-
freedom (DoF) j are in a set J that comprises a
specific number of joints, that depends on which
part of the body needs to be constrained.

Standing In the standing controller, the char-
acter should keep a pose but also remain upright,
with both feet on the ground, i.e. it should not
fall down. In addition to the objectives from the
posing controller, we use the following two ob-
jectives [4].

ECOM = (c− c)2 (2)

whereECOM is the squared distance of the char-
acter’s center-of-mass c to a target position c at
the desired height. This leads to the behavior of
the character trying to keep its balance.

Efeet = y2leftFoot + y2rightFoot (3)



where Efeet is the sum of the squared altitudes
of both feet, where minimizing leads to the feet
staying on the ground, which helps in finding a
balanced pose.

During evaluation of a standing individual,
randomized external forces are applied at the
center of the character’s pelvis, to enforce learn-
ing of corrective motion to keep balance.

Reaching The reaching behavior is defined as
moving the right hand to a target position, while
keeping a balanced stance. After reaching the
target, the hand returns to its original position.
This behavioral pattern is repeated indefinitely.

The reaching module uses all of its predeces-
sors’ objectives, and adds two of its own. The
main reaching error metric is the sum of two
components, representing moving the right hand
h towards the target position htarget, and mov-
ing back to the rest pose hrest. The notation of
tf is used for those simulation frames that are
spent moving the hand towards the target, and tb
for the ones moving back.

Ereach =
∑
tf

(ht − htarget) +
∑
tb

(ht − hrest)

(4)
An error metric for control torque is added to

prevent jittery motions of the reaching arm.

Etorque =
∑
j,t

τ2j,t (5)

is the sum of the control torques τ over every
DoF j of the joints, for all simulation frames t.

The behavior of alternating between reaching
for the target and the rest pose is governed by a
finite state machine.

The fitness values are calculated using the fol-
lowing formula, where fW is the fitness value,
given a setW of error-weight value pairs (x,w).

fW = 100 ·

δt
T

∏
(x,w)∈W

1 +
w

1 + x

 (6)

The number of simulation frames that have
passed without individual failing is denoted δt,
with relation to the target number of frames T .

Figure 2: Evolutionary progress of the hierar-
chical and baseline controllers.

An individual fails, as a form of early termina-
tion, if one of its metrics exceeds a particular
threshold, which depends on the control module
and is fine-tuned by hand.

We interpret the controller outputs as target
joint angles, which are then converted to joint
torques using Proportional Derivative control.
Each joint DoF has a PD controller, using the
same kp gains and torque limits as [4]. The kv
values are set to 2

√
kp. The resulting torque is

clamped to be within ±200Nm. To limit vibra-
tion of the toes, we add passive spring-dampers
(spring constant of 30 Nm / rad).

3 Results

A set of animation controllers, generated using
the proposed method, is compared to a set of
baseline, non-hierarchical, controllers (see Fig-
ures 2 and 3). Without exception, the baseline
controllers took longer to evolve (if at all), or
otherwise achieved lower levels of fitness.

Since posing is, in this case, an elementary
behavior (meaning that it has no underlying



Figure 3: Posing, standing, and reaching net-
works are hierarchically combined.

behaviors), the corresponding hierarchical and
baseline control modules are exactly the same.
Therefore, no comparison is needed.

As can be seen in the complementary video,
the result of both standing controllers is a bal-
anced stance of similar quality. The baseline
character adopts a slightly wider stance, which
may provide better lateral balance.

As opposed to the hierarchical reaching con-
troller, the evolution of the baseline reaching
controller has to start out with a long period in
which it learns to keep a balanced pose. In later
generations, the reaching arm is jerked upwards,
independent of whether the reaching state is ac-
tive or not. This causes the character to lose bal-
ance, and fall to the ground. Even after passing
a time limit of 4.5 hours, evolution does not con-
verge to an acceptable solution.

The hierarchical modules are coming out
ahead in terms of both the time and number of
generations that are needed to converge to a so-
lution. The hierarchical controller is generated
in under an hour of evolution, while the base-
line controllers take several hours apiece. Also,
generations for the baseline controllers seem to
take less time (19.9 versus 17.9 sec / generation
on average for the standing controllers), but they
do require many more of them.

Another interesting observation is that the
baseline modules tend to evolve more connec-
tions and hidden nodes. This is probably due to
the properties of complexification over time that
are inherent to the NEAT algorithm.

4 Conclusion

In this work, a hierarchy of control modules
is applied to the evolution of a physics-based
character animation controller. We have shown
that evolving these control modules one-by-one,
with each of them dependent on its predeces-
sors, will allow evolution to converge faster than
when using baseline controllers. The control
modules can be dynamically switched on or off,
resulting in a variety of different tasks that can
be performed by the same hierarchy.

Evaluating the naturalness of the results
proved to be difficult. Both baseline and hier-
archical animation controllers generate motion
that is showing some unrealistic characteristics.
In the future, we plan to test our approach with
larger hierarchies, thus capable of generating
a larger variety of motion where behaviors are
chained to perform more complex actions. For
example, we want to design controllers for lo-
comotion and combination of locomotion with
other tasks such as reaching.

Acknowledgments

This research is funded by the European Com-
munity Seventh Framework Program, under the
TARDIS project (FP7-ICT-2011-7).

References

[1] S. Uithol, I. van Rooij, H. Bekkering, and
P. Haselager. Hierarchies in action and mo-
tor control. Journal of Cognitive Neuro-
science, 24(5):1077–1086, 2012.

[2] B. Allen and P. Faloutsos. Evolved con-
trollers for simulated locomotion. Motion
in Games, pages 219–230, 2009.

[3] K.O. Stanley and R. Miikkulainen. Evolv-
ing neural networks through augmenting
topologies. Evolutionary computation,
10(2):99–127, 2002.

[4] M. Al Borno, M. de Lasa, and A. Hertz-
mann. Trajectory optimization for full-
body movements with complex contacts. Vi-
sualization and Computer Graphics, IEEE
Transactions on, 2012.


